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D I F F R A C T I O N  O F  A P L A N E  E L E C T R O M A G N E T I C  W A V E  

O N  A P O O R L Y  C O N D U C T I N G ,  C E L L U L A R  S T R U C T U R E  

I N  A D I E L E C T R I C  L A Y E R  

T. A. Khmel' and V. I. Yakovlev UDC 621.372.8 

Various ways are known to control the reflectivity of surfaces, both to reduce energy losses in the reflection of an 

electromagnetic wave from a surface with a finite conductivity and to increase those losses in order to reduce'the intensity of 
the reflected waves. The first of these problems is solved, in particular, using a comb comprised of strips of a well-conducting 
material. There are a review of the corresponding experimental data and a theoretical confirmation of them in [1]. Experimental 
research [2] has shown that a similar comb made of poorly conducting strips enables one to solve the opposite problem of 

reducing the intensity of the reflected wave; the well-known resonant absorber in the form of a thin, poorly conducting layer 
located at a distance X/4 in front of the conducting base works in the same way. 

It is of interest to investigate the diffraction of an electromagnetic wave on a periodic structure that is the result of 

combining an absorbing comb and a thin absorbing layer, to clarify the possibilities for controlling the absorptivity of the 

resulting structure. 
The present paper is devoted to a theoretical solution of this problem. The geometry of the problem is given in Fig. 

I in the form of a cross section of the structure under consideration, which consists of rectangular cells resting on a plane with 
a conductivity a = oo. The cells are formed by thin, poorly conducting walls, and the space inside the cells is filled with a 

dielectric having a dielectric constant e. The arrangement of the coordinate system and all the geometrical characteristics are 
shown in Fig. I. Note that by the term "thin, poorly conducting wall" we mean a plane layer of a conducting (with a 

conductivity tr 1) material whose thickness d I is considerably less than either the wavelength or the thickness of the skin layer 

in the wall material, i.e., 

Ao c 
dl << ~ ,  dx << ~ x ~ "  (1) 

The thickness of  this layer therefore cannot enter into the problem as a physical parameter; the only parameter characterizing 

the layer is its surface conductivity A = trld 1, which determines the surface density of current in the layer to be i z = A E  z. The 

surface conductivity A of the vertical walls comprising the comb and the conductivity A 1 of the horizontal layer lying in the 
plane y = 0 are assumed to differ, in general (Fig. 1). 

The incident wave is linearly polarized with E~ ~ 0 and the wave vector k 0 lies in the (x, y) plane. Using the symbol 

~o with the appropriate indices to designate the amplitude of E z [the time factor is taken in the form exp(-/cot)], we take the 

indicent wave in the form 

~o = e x p ( - i k o g  cos 0o + i koz  sin 00). 

The field in the half-space y > 0 will then be characterized by the sum ~o 0 + ~l(X, y), where ~1 is the amplitude of the 

reflected wave, while we mark the field in the strip - b  < y < 0 by the index 2. 
The fields being sought satisfy the equations 

ko for i =  1, 
A ~ i  + k~qoi = O, ki = V/~kO for i = 2 
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Fig. 1 

and the appropriate boundary conditions: the condition of emission as y ~ oo, the condition 

~P2(x,-b) = 0 (2) 

at the superconducting substrate, and the conditions at the poorly conducting walls that form the cells of the given structure. 

By virtue of (1), the latter come down to continuity of the field E z and the presence of discontinuities of the tangential 

components of the field t t  at those walls. For the boundary y = 0, in particular, these conditions are 

~2(x, O) - r (x, O) = exp(ikox sin 8o), 

.4rwA1 (3) 
O~2(x'O)oy - ( x , 0 ) - z  c2 ~ 2 2 ( x , 0 ) = - i k o c o s S o e x p ( i k o x s i n 0 o ) .  

Hence it follows that as the x coordinate changes by a multiple number of periods d of the structure, the solutions being sought 

must acquire an additional phase 

~;i(z +nd ,  y) = r u = kodsinOo. (4) 

With allowance for this fact, the remaining boundary conditions at the comb walls can be written as equations connecting ~2 

and O~o210x at the right and left sides of a given cell. Using the internal coordinate x ' ,  wherex = nd + x ' ,  n = 0, + 1, +2  . . . . .  

we have 

~2 z'=dl2 = ~2 z'=-dl2 exp( iu) ,  

O~P 3 0qa2 [ .47rA.~ I (5) 
Ox' x'=d/2 Ox' [z,=_d/2 exp(iu) = z c----T--~e13:,=a/2., 

The solution for the region - b  < y < 0 that satisfies the conditions (2) and (4) can be represented as 

o~ 

qa2(z,y) = ~-'~(Amsina,~z' + B,,, cosc tmz ' )x  
m . = l  

• [ /3mexp( ik~Y) -  ( ~ m ) e X p ( - i k [ n y ) ] e x p ( i n u ) ,  

(6) 

where 

k~ = r r - a2m (Rek~  >/0, l m k ~ / >  0), ~m = exp(ik~mb) �9 (7) 

The constants A m and B m and the eigenvalues a m are determined from the boundary conditions (5), from which we get a 
homogeneous system of equations that must have a nontrivial solution: 

Am sin ~ ( 1  + exp(iu)) zm . =Bm COS ~- (exp(zu)  -- 1),  

Am~ cos ~(i - exp(iu)) = (8) 
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Zm Zrn B ~ - ~ -  sin -~ - (exp( iu )  + 1) + i71(A,~ " zm zm = sin -~- + B m  cos - ~ - ) .  

Here 

47rA kod 
Zm = amd; ~ = - - - -  

e 2 

Let us consider two particular cases. 

1. exp(iu) = 1 or u = kodsin(O o) = 2na'. The case of direct incidence, u = 0, does not come in here. Then from 

AmSin(Zm/2) = 0 we get either 

o r  

A~ = 0, z~ s i n ( z ~ / 2 )  + iycos(zm/2) = O, 

Finally, the general solution has the form 

where 

s i n ( z ~ / 2 )  = 0, B m =  0.  

oo  

~o2( z,  y) = ~ {Am sin( 2 m r x ' /  d)[exp( ik~n,y)[3ml - e x p ( - i k ~ l y ) / ~ m , ] +  
m = l  

+Bin cos(c~mx')[exp( ik~2y)flm2 - exp(-ik~m2y)/]3.,2]} exp( inu) , 

(9) 

Here 

k ~ ,  = ~/ko2E - (2mr/d)~,  k~2 = @,:o2S - a ~ ,  a.~ = 

13m~ = exp(ik~n,b), ~m2 = exp(ik~2b),  (Zm/2)tg(Zm/2) = --ir]/2. 
(10) 

2. exp(iu) = - 1 or u = kodsin(Oo) = (2n - 1)~r. By analogy with case 1, we write the general solution in the form 

o o  

sm(ct,nz )[exp(,k.~2y)fl.~2 - exp(- ik~2y) / f lm2]+ 
m = l  

+ B ~  c o s ( ( 2 m -  1)rz ' /  d)[exp( ik~nlY)/3mi - e x p ( - i k ~ l y ) / f l m l ] }  exp( inu ). 

(11) 

tim1 = exp(ik~xb),  tim2 = exp(ik~2b),  (zm/2)ctg(zm/2) = ir}/2. 

(12) 

In the general case exp(iu) ;~ + 1, we write the spectral equation for the eigenvalues z m = Otmd of the problem (8) 

a s  

(zm/2)[ctg(z.~/2) s in2(u/2)  - t g ( z . J 2 )  cos2(u/2)] = i~?/2, (13) 

while we write the solution (6), (7) within ceils of  the structure as 
�9 OO 

~22(x,Y) = [E Cmhm(x')(exp(ikemY)13m- exp(-ik~mY)/l~m)] exp( inu) ,  
m = l  

(14) 
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where km e = x/ko2e - t~m2; ot m = Z m / d  , while the eigenfunctions are 

h .~ (x ' )  = cos (amx ' )  + z t g ( u / 2 ) c t g ( z m / 2 )  sin(am )- (15) 

The validity of such a representation requires some additional justification (see, e.g.,  [3, 4])�9 Strictly speaking, a system 

of eigenfunctions of a non-self-adjoint operator in Hilbert space [including the operator that implements a Helmholtz equation 

with the boundary conditions (5)] is incomplete, since a complete system also includes the associated functions generated when 

there are multiple eigenvalues. It was shown in [1] that for Eqs. (10) and (12) under the condition Im(7/) > 0, including real 

7/, the multiplicity of roots does not exceed one. Using a similar approach, we can show that the spectral equation (13) for real 

~/cannot have multiple roots, which will mean that the representation (14) is valid�9 

Note that i f z  m is a root of Eq. (13), then - z  m is also a root and it generates the same eigenfunction (15). We can thus 

obtain all of eigenfunction space by confining the analysis to one half-plane [for determinacy, Re(zm) -> 0]. 

Following [4], solutions (13) for a zero right side, 7/ = 0, are called exit points for Zm, and solutions for ~7 ~ + oo are 

called entrance points. It is obvious that z ex = + u + 217r and z en = nTr. Exit and entrance points lie on the real axis and 

alternate, i .e. ,  after an exit point comes an entrance point, then another exit point, etc. We number the exit points (and hence 

the solutions for 77 > 0) starting with the smallest positive value of z ex in the direction of an increase in the real part. The 

dynamics of the values of Zm with variation of 77 from zero can be determined from an analysis of Eq. (13) in the vicinity of 

an exit point. As a result, we have z m ~ Zr~ x - i~ /z~  x, i .e.,  for Zm ex > 0, the curves on which roots Zm are located emerge 

into the lower half of the complex plane. Since there are no solutions on the real axis but entrance and exit points (except for 

the case of u = na:, which is mentioned below), the set of solutions {Zm} lies entirely in quadrant IV of  the complex plane. 

The correspondence of entrance and exit points is established by analogy with the allowance for second-order terms, as well 

as an analysis of the differential equation 

dzm = i sin z,n (16) 
dr/ cos Zm - cos u - Zm sin zm -- i~ cos Zm 

that follows from (13), with the initial conditions Zml,7= o = Zr~ x. 

A numerical solution of  (16) showed that the roots actually lie in quadrant IV and are located on curves that emerge 

from the points Zm ex and arrive at the entrance point closest to the exit point and lying to the right (for zm ex > 0). I f  u = n r ,  

then some of  the entrance points coincide with exit points and the roots corresponding to them lie on the real axis [which is 

taken into account in Eqs. (9) and (11)]. 

We now show that the multiplicity of roots is one everywhere. The proof is carried out from the contrary. Assume 

that some root Zm has a multiplicity of at least two. Then along with Eq. (13), which it is convenient to rewrite in the form 

f ( z )  = z(cos z - cosu)  - ir~sin z = 0,  

the following equation must be satisfied: 

(17) 

f ( z )  = (cos z - cos u) - z sin z - io cos z = 0.  (18) 

We rewrite Eqs. (17) and (18) as 

exp ( 2 i z ) ( z  - '7) - 2 z  cos u exp  ( i z )  + ( z  + 7)  = O,  

e x p ( 2 i z ) ( z  - ,7 - i )  + 2~ cos , ,  e x p ( i z )  - ( z  + ~ + 0 = 0 .  

Eliminating exp(iz) from (19), we obtain a biquadratie equation for z: 

(19) 

( z2  - O 2 - i o )  2 = 3 2 ( ( z 2  - i v )  2 - ' f l z 2 ) ,  3 = cos u ,  32 < 1 (20) 

(the case of  3 2 = 1 corresponds to the spectral equation (lO) considered in [1]). Solving (20) for y = z 2 - /71,  we obtain 

(2 - 82) ,72/2  4- 4 ~  
y =  

1 - 3 2 
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( D  = ~ / 2 ~ 2 ( r / 2 / ~ 2 / 4  - i~/(1 -/32))), from which we have for the quantity being sought 

r]2(2 -- f 2 ) fir/ ~ / ~ _ 2  

(21) 

(C = ~74~4/4 + 47/2(1 - ~2)2 > 0 ) .  It is easy to ascertain that both solutions (21) lie in the upper half-plane. In fact, the 
imaginary part is 

r] 1 T 2 ( 1 _ / ~ 2  ) + v / C  > 0 ,  

since for/~2 < 1 and real ~ and/3, the following inequality is always valid: 

4(1 > + - f )2 _ 

The solution z 2 thus lies in quadrant I or II of the complex plane, and then z cannot lie in quadrant IV. This contradiction shows 

that Eqs. (17) and (18) are incompatible, and hence no multiple roots or associated functions exist, so the representation (14) 

for the solution inside a cell of the structure is justified. 

The solution in the free space above the comb consists of the incident and diffracted electromagnetic waves. The latter 

can be represented in a form analogous to (14), with the ordy difference that here e = I and A = 0, the eigenvalues coincide 

with exit points, and the y dependence has a damped nature, 

rrt=l 

where the eigenfunctions are 

g.~Cz') = cos('r.~z') + itg(u/2)ctg(t.~/2) sinC-r.~z'); t.~ = z~ x ; 

%n=tmld; k ~  Rek~ Imk~ 

The expansion coefficients C m and D m for the functions ~1,2 are determined from the boundary conditions (3), from 
which we have 

c~  

exp(ikosinOoz') + ~ Dmgm(X') = E Cm(fm - 1/fm)hm(x'); (22) 
m = l  m = l  

803 



oo 
-ko cos Oo exp(iko sin Oox')+ ~ Drak~ ') = ~ C.~k~(~m + 1/13m)hm(x')- 

r n ~ l  m ~ 1  

(23) 
4 rAlko[  exp(ikosinOox') + ~ Dmffm(x')]. 
C rn=l 

One way to change from (22) and (23) to an algebraic system of equations for D m and C m is to introduce the family 
of functions 

pm(x') = cos ((~mx') - i t g ( u / 2 ) c t g  (zm/2)  sin ((~mx') 

and the operator l ( f ,  g) = 
d/2 
f f(z)g(x)dx. Using the property 

-d/2 

Z(Pm, h,,) = ~,,.,s(p.,, h.,) 

enables us to reduce the system (22), (23) to the form 

(--120500 "]- A1)f(ffo, pn)3!- ~ Dra. di- --c--A1) f(g.,,t,,)n) = 
m=l 

= C . r o  + 

/(go, p.) + ~ Dm~(gm,p~)= C~(~ - 1 
m=, T- )1(h~'p~) 

Eliminating C n from the equations, we obtain 

~ D ~  ~ - i k o  ~ + i k k o  + .A, t(gm,p,,)= 

1 - cos00 + A1 - l(go, p,,). 
= ~ " /3~ 1 ko 

(24) 

where 
ir] cos(t in/2) cos(zn/2)d 

l(gm,p.) = z i- t~ - z~ ' 

i~ cos(u/2)  cos(z,~/2)d 
~ ( 9 o , p . )  = 5 u2  _ z.~ " 

(25) 

In order to solve the algebraic system (24), (25) numerically, one must, first, confine oneself to a finite number of 
terms retained in the solution and, second, transform the conversion matrix. We accomplished the latter by multiplying each 
equation by tn 2 - Zn 2, while the justification for the former was established from numerical experiments by comparing the 

results obtained for different numbers N of retained terms. It turned out that to achieve - 10 -4  accuracy in calculating the 
structure's reflection and absorption coefficients, it is sufficient to confine ourselves to N = 4, and the main series of 

experiments was carried out for this N. 

Some typical results of the calculations are represented graphically. It was found that the influence of the comb 

structure on the absorptivity of  the subject under consideration is manifested optimally if the comb's  period equals half the 
height of its component strips, i.e., for d = b/2. This geometry pertains to all of the graphs given here. The dielectric constant 

was taken everywhere to be e = 1.4; the conductivities of the comb walls and of the dielectric coating deposited on top are 

characterized by the dimensionless values X = 47rA/c and Xl = 47rAl/c, which are stipulated everywhere. The absolute 
dimensionless amplitude r = [ D 1 [ of the main reflected wave figures as the reflection coefficient in all case s, since for the 

parameters under consideration, such waves have amplitudes at least an order of magnitude smaller, and the fraction of the 

energy carried off by them can be neglected. 
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In Fig. 2 we give the reflection coefficient as a function of the dimensionless wave number k = k0b,4"[ for the case 

of direct incidence. The dimensionless conductivities X and Xl change from curve to curve, but their sum remains constant 

(X + Xl = i). Curve I pertains to a structure with no comb (X = 0), consisting of a dielectric layer and a deposited conductive 

coating with X1 = 1; this structure is a resonant absorbing layer, and curve 1 is the well-known resonance curve r(k), when 

the reflection coefficient is low in a narrow wavelength range while r increases rapidly to unity with greater distance from 

resonance. Curves 2-4, corresponding to X = 0.3, 0.6, and 1.0, allow for the presence of  a comb and describe the dynamics 

of variation of the spectral absorption characteristic curve with variation of the structure's parameters. It is seen that the 

maximum value of r between the two minima, which equals unity for a resonant layer, decreases with increasing X and is 0.337 

for X = I. With a decrease in wavelength from resonance (short waves), a structure consisting of combs with no coating is 

preferable, while for wavelengths longer than resonance, a resonant absorbing layer continues to have some advantage. 

Combining these two elements into one structure does not lead to broadening of the absorption spectrum. This fact is 

even more obvious for a high conductivity X. In this case, as seen from Fig. 3 (X + Xl = 1.2, 00 = 0), the first minima of 

r for all of the curves do not reach zero, but in return, the maxima of r that follow them are even lower for a pure comb than 

in Fig. 2, and the function r(k) is even flatter. A structure consisting of a pure comb with x > 1 is thus consistent with a wide 

spread in k while retainifig a satisfactory absorption level. 

The function r(k) retains this character for an oblique incident wave. Here the reflection coefficient for a structure with 

no upper coating (Xl = 0) equals zero for X = X. = cos 00 and a layer thickness b = k/(4cos 00). In Fig. 4 we give the 

functions r(k) for 00 = x/4 for different X [curves 1-5 correspond to X = (1/3)cos 00, (1/2)cos 00, cos 00, 1.0, and 1.5]. It 
is seen that the reflection coefficient is higher everywhere for x < x,  than for X = X.- The flattening of the function r(k) noted 

above occurs with increasing X. 
In Fig. 5 we give r(k) for different angles of incidence and for a fixed X = 1. For 00 _< ~r/8 the curves differ little 

from the respective curve in Fig. 2, corresponding to normal incidence. The qualitative reorganization of this function begins 

at 00 > r /4.  
In conclusion, we note that, as shown by the data given here, combining a comb and a thin absorbing layer into one 

composite structure does not lead to the desired broadening of the absorption spectrum, as one would expect purely from 

theory. 
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